
—DRAFT—
CAN A MANROOT TENDRIL PULL ITS VINE

CLOSER TO A SUPPORT EVEN AS THE TENDRIL
INCREASES IN LENGTH?

MICHAEL RAUGH

Abstract. It appears that a tendril can contract in span while
coiling—even as it expands in length—a proposition that sounds
paradoxical. But is it true? It’s possible the tendril could increase
in length rapidly enough to offset span contraction. The best way
to resolve this would be to make measurements of real tendrils
during growth. Another way is to analyze a photograph of a ten-
dril to fit the photographed tendril to a right-circular helix. The
latter method is followed here, validating the “paradox”—a tendril
growing in length certainly can pull its vine closer to a support, one
of its principal functions according to Charles Darwin (the other
being spring-action to avoid detachment in stiff winds).

The span of a coiled tendril is the straight-line distance between its
two ends; its length is the total distance around its coils, the distance
a ladybug would have to walk from one end to the other. It is obvious
from Fig. (1) that the span of the tendril in the photograph is much
shorter than its full length if rolled out straight.1 But it is not obvious
that, if the tendril increased in length during its coiling process, its
span would shrink. So we ask the question, what if the tendril grows
during coiling? Can the span contract simultaneously?

We can answer the question by making a straightforward analysis of
a photograph of a coiled tendril. Our analysis will show that a tendril
is capable of pulling its vine from 50–70% closer to its support than it
was at the moment the tendril attached to the support.

We do this by matching the tendril to a similar right-circular helix.
Such a helix can be expressed in xyz-space as,2
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1Rollout on a tightly coiled tendril like the one in the photograph would require

inelastic strain and break tissue.
2See for example Do Carmo [2] or Struik [4].
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(1) H(θ) = (a cos ζ, a sin ζ,

(
b

2π

)
ζ, a > 0, b ≥ 0, ζ ∈ [0,∞)

where the angle ζ is measured in radians counterclockwise from the
positive x-axis. Note that the tendril moves upward b units each full
revolution of the tendril.

Copyright c©2010 Philip Grote.

Figure 1. A tightly coiled tendril. The sawtooth profile
of this tendril permits an easy estimate of the ratio of the
span of its coils to the length wound up in its coils. See
text for sample calculation.

Let’s do some mathematical surgery to compute the ratio of the
span of this helix to its length. If you picture the tendril wrapped
around a right-circular cylinder, and imagine a vertical cut beginning
at (a, 0, 0), then unwrap the cylinder and lay it flat, you can see that
each revolution of the helix forms a right-triangle with legs of lengths
2πa and b. This implies that the length of one full revolution of the
helix is

√
4π2a2 + b2, and so for this helix the ratio of span to length of

the helical segment is,
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(2)
Span

Length of helix
=

b√
4π2a2 + b2

Now let’s examine Fig. (1) and fit a helix to it. This is easy if we
print the figure on a piece of paper and estimate the relative distance
between the ends of a full coil and its radius.

To do this, I approximate any complete loop of the tendril by a loop
of a co-axial helix. Since the tendril has volume and the helix does not, I
fit the helical loop midway in the volume of the tendril. I don’t bother
with the reversal near the midpoint or the extreme ends. Of course
I’m making an assumption about the symmetry of the tendril like the
one in the figure, namely that viewed end-on the tendril would appear
more-or-less symmetrical about its central axis, not oval or flattened.
Observation of tendrils in nature confirms this is reasonable.

Choosing loops at random for measurement, I get the approximate
relation b ≈ 2a. Slight variations in this estimate will make only slight
differences in the results. Substituting this relation into the ratio equa-
tion,

Span

Length of helix
≈ 1√

π2 + 1
≈ 0.3

Since this result holds for each loop, it implies that the final span of a
tendril may be as little as approximately 30% of its mature length. This
has an important consequence for us. Darwin [1, 53–55, 59] claimed
that a tendril acquires the power of coiling when near its full length
but loses the power when full grown if unattached. So let us suppose
that a tendril could attach to a support by the time it had achieved
something like 60% of its full length.3 If that number is correct, then
we can infer that a tendril is capable of pulling the vine to which it is
attached at least 50% closer to the support than the vine was at the
time of attachment.

This contraction of a tendril can be modulated by external con-
straints that prevent closure, such as intervening obstacles or other
tendrils pulling in opposing directions. Another cause of weak coiling
can be that the tendril was nearly senescent at the time of attachment.

3Darwin also asserted that tendril coiling is a consequence of differential growth
on the dorsal and ventral sides of the tendril. An elegant study using finite element
analysis illustrates how this is possible [3].
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We have shown examples in the Gallery of tendrils that do not coil
tightly—or even coil at all—presumably for such reasons.

But the fact that some tendrils do contract tightly demonstrates that
they are capable of pulling their vines a fair distance closer to their
supports. This they can do “paradoxically” while actually increasing
in length.

References

1. Charles Darwin, On the movements and habits of climbing plants, NYU Press,
1989,
(Originally published on September 1, 1865 as a 118 page treatise by the Linnean
Society, it was republished with an appendix and corrections in 1882; it has been
published in a scholarly edition of the complete scientific writings of Darwin by
NYU Press and is available elsewhere in inexpensive book format.).

2. Manfredo P. Do Carmo, Differential geometry of curves and surfaces, Prentice
Hall, Englewood Cliffs, 1976.

3. Annika Eberle, Kenny Quinn, and Lori Bassman, Free coiling in tendril-bearing
plants, 6th Plant Biomechanics Conference Cayenne, November 16–21, 2009.

4. Dirk J. Struik, Lectures on classical differential geometry, 2 ed., Dover Publica-
tion, New York, 1988.

E-mail address: michael dot raugh (at) gmail dot com
URL: www.mikeraugh.org


