Leibniz used Calculus to solve the Catenary
Problem:
But he presented it as a Euclidean Construction
without Explanation.
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Catenary: Derived from Latin Word for Chain, Catena

Boston Harbor April 2017



“Pink Moon”: Full Moon April 2017
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Some History

1638, Galileo discussed the hanging-chain problem.

1690, Jacob Bernoulli published a challenge to solve the
problem.

1691, Leibniz and Johann Bernoulli published the first solutions.

1761, Johann Heinrich Lambert introduced hyperbolic functions
and named them:
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Descartes: A curve must be defined by a construction.

He deemed no other method was sulfficiently accurate.
Descartes’ rule was disputed during the late 1600’s.
Analysts were beginning to use calculus and power series.

They were led by Newton and Leibniz.



Leibniz played it both ways.

Leibniz presented the solution as a Euclidean construction.
But he did not publish the derivation.
He explained it in a private letter.

The construction turns out to be impossible!
A paradox?

And so our story begins....



Analytic Formulation of the Catenary

In modern terms (with scaling factor a),
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The curve is bilaterally symmetric about the y-axis,
and the lowest point is at (0, a).



Leibniz’s Representation of the Catenary:
Draughted using a Ruler & Compass
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The segments D and K are assumed given.

; . . d
Leibniz uses only their ratio: -

If the ratio is not constructable, then neither is the curve.
But D and K are given, so their ratio could be anything.

This fact can make a fictitious “construction” correct,
(in theory).

This resolves the paradox for Analysts but not for Cartesians.



First Steps of the Construction

N 0 (ﬁ)

Draw: (1) horizontal axis, (2) origin O and vertical axis;
(3) choose OA as unit, (4) mark unit lengths on horizontal axis.



Constructing the “Logarithmic Curve”
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Ordinates over N & O and O & (N) are in ratio K:D.
Middling ordinates are determined by geometric means.



The “Logarithmic Curve” in Cartesian Coordinates
(Represented as an Exponential Curve)

Given two points (1, 1) and (x2,y2), get a new one:

T+ X2
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The construction yields dense points on the curve,

z/a
y(xr) =a <Z> (z a binary number)



Construction of the “Catenary”
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As constructed: C(z) = % witha =1and r = %



Leibniz’s “Catenary” is Built on an Exponential Curve.




Is Leibniz’s “catenary” truly a catenary?

A true catenary must be of the form:
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z(x)=a- 5

Leibniz needed the ratio d/k = e.

In effect, he used that — as revealed in his figure.

So, as we shall see, it is a true catenary.



Two Examples Requiring a True Catenary: d/k = e

ﬁ (¢} (ﬁ)

Segment AR is equal in length to arc CA.
Tangent at (C) follows from fact that Zb is the complement of Za.
(y = coshx)



For Fun: The Tractrix is the Involute of the Catenary.
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Rotate the arc-length triangle to trace a tractrix.
(A problem solved by Leibniz later, not in his figure.)



How did Leibniz arrive at his solution?

He explained his derivation in a letter:

To Rudolf Christian Von Bodenhausen, August 1691, with
attached Latin text, “Analysis problematis catenarii’, in G. W.
Leibniz, Samtliche Schriften und Briefe, series Ill, volume 5
(2003), p. 143-155

(Thanks to Siegmund Probst)



The Derivation Part I:

Leibniz deduced, as did Bernoulli (see Ferguson), that:
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(s = arc length, a = scaling factor)

Setting z = y + a, Leibniz inferred s = /22 — a?
Or, 22 — s* = a2.
From this, the leading clue:

(Wecanusea=1): (z—s)(z+s)=1.



A solution is suggested by this graph:

"Logarithmic curve"

B y=z+s

-X o +X
(z—38)(z+s)=1
Let: —z =In(z—s), +x =1In(z + 3).

Then: = — Y=Y (Why not log,, b # ¢?)




The Derivation Part 2

(z—s)(z+s) =1 suggests: In(z —s) = —In(z + s).
Leibniz approach: w(x) =z —s and use d(lnw):

dw  dz—ds

w zZ—5
But zdz = sdsand dz = sdz =—

dfw_dz—zda:__(m .
w  z—dz/dr

—x =In(z —s), similarly 4z =In(z+s)

[ICs 2(0) = 1,2'(0) =0 = Integration constant = 0.]



The Derivation Part 2b: Bring back “a”

Leibniz (simplified): Z =% G _ o = B9
a a a
dw dz—ds _dj
w  z—5 a
So,
L e (2= 8), similarly  + % =1n (2 +5)
a a a a
F_te et shE
a 2 a

[ICs 2(0) = a,2'(0) =0 = Integration constant = 0.]



“Let those who don’t know the new analysis
try their luck!”

To Bodenhausen Leibniz also wrote that
he left out one specification for his construction:

Il D and K were in ratio 1 to 2.7182818 !l

Why this ostentatious approximation?

He didn’t name it or explain it,
and it was too precise to use by the draughtsman.

I . d
He had already built-in the exact value for e using dy
w



A Sample of Leibniz’s Technique: Differentials I

dy dy
Prove: ——~=s — dz=
dx VY2 + 2y

Use: (ds)? = (dz)*+ (dy)?
Let dx be constant, differentiate:
ddy = dsdx and dsdds = dyddy
Combine (and “anti-differentiate”):

dds =dydx — ds=ydoz+cdz —

(dx)? + (dy)* = (y* + 2y + ¢)(dx)?



A Quick Sample of Technique: Differentials I1
(dz)? + (dy)* = (v* + 2y + ¢)(da)* =
[Use initial conditions,  y(0) = ¥’ (0) = 0]

(dy)? = (y* + 2y)(dz)?

d d
ﬁzﬁgﬂ—}—?y = dx= Y

Y+ 2y

QED



Conclusion

In 1761 Lambert named the “Hyperbolic Cosine”:

2

coshz =
In 1691 Leibniz had already called it the Catenary!

At the time of Leibniz, the Cartesian canon of construction
began yielding to the methods of calculus.

Leibniz used conventional constructions to exhibit curves,
but he relied on analysis as well.
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A Monumental Catenary Arch 631 Feet High

The Gateway Arch, St. Louis, Missouri
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Thanks for your attention.

Supplementary notes (and these slides) available at,

‘ www.mikeraugh.org‘

For questions or comments, please write to Mike at:

\ Auranteacus@gmail.com ‘




