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Huygens named a hanging chain the Catenary

and proved the shape is not a parabola:

Derived from the Latin word for chain: catena

Internet
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High-tension Power Lines

Internet, QT Luong
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Supporting Catenary for a Railroad Power Line

Internet, Steve Sconfienza, Ph.D.
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Another supporting Catenary: a “Hawser”

This Hawser is looped over a Dock Bollard.

Internet, wiseGeek
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Catenaries posed a challenging physics problem.

Galileo mentioned the problem in 1638. It was solved in the late
1600’s using the new methods of calculus.

Liebniz was interested in calculating machines.
He gave a compass & straightedge construction of a catenary

and explained how a real one could be used for finding
logarithms.

Johann Bernoulli advocated using differential equations to
formulate physics problems.

His solution showcased his approach.

They solved the problem in response to a published challenge.
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1690 Jacob Bernoulli published the Challenge:

Determine the curve of a freely hanging chain!

Jacob Bernoulli (1665–1705)

Internet
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1691 Leibniz and Johann Bernoulli published solutions.

G. W. Leibniz (1646–1716) Johann Bernoulli (1667–1748)

Internet
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Leibniz’s construction was a classic Euclidean
“Ruler & Compass” construction.

Nobody knows how Leibniz arrived at his construction.

He never specified the underlying function nor gave it a name.

Manifestly, it was based on expert knowledge of the
exponential function and hyperbolic cosine.

But the hyperbolic cosine wasn’t known by a specific
expression or name until 70 years later (Lambert 1761)!!!
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Bernoulli used the new methods of differential calculus to
derive a differential equation for the Catenary.

He wrote the correct equation without solving it. He used it to
imply that Leibniz’s construction was correct:

dy =
a dx√

2ax + x2

We can solve this equation ourselves:

y(x) = a · cosh
(x

a

)
− a

(A catenary pulled down to the Origin)



TITLE&INTRO THE CHALLENGE SOLUTION FINALE

Oddly, Leibniz’s construction wasn’t what Bernoulli found!

Leibniz should have constructed a curve equivalent to the
solution of Bernoulli’s equation:

y(x) = a · cosh
x
a
= a · e

x
a + e−

x
a

2
(a ∈ R)

But he didn’t!

(Bernoulli used the parameter “a” correctly as the length of the “subtangent”
of a logarithmic curve; Leibniz did not.)

And so our story begins....
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Figure in Leibniz Article illustrating his
Ruler & Compass Construction
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Leibniz begins with segments K and D,
and one horizontal line.

A classic construction begins with a set of randomly placed points and
random segments: (1) a straightedge (ruler without distance marks) can be
used to draw a line determined by two given points; (2) a compass can be
used to draw random circular arcs or of a radius determined by a given
segment, or to mark points on a line .

From these initial elements, all other points and lines are constructed using a
straightedge and a compass, illustrated in the figure.

In the figure, a horizontal line through point O is given. Leibniz constructs a
line perpendicular at O, and on it sets an arbitrary point A (defining segment
OA), through which a parallel to the first line is constructed. Segments K and
D of unspecified length are shown to the left of the figure, D longer than K. I
use a, k and d to denote lengths of the three segments.

Leibniz proceeds by constructing segments ON and O(N) equal to OA with
perpendiculars above each, then Nξ of length ak/d and 1(N)1(ξ) of length
ad/k . Leibniz achieves these proportions by construction, not by the
numbers I have used. He identifies OA as his unit, so I use a = 1 where
appropriate but retain an undetermined a for generality.
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Leibniz’s Rules for Constructing his “Logarithmic Curve”,
represented in Cartesian Coordinates

I use numerical coordinates with origin O at (0, 0), points N and ξ at (−a, 0)
and (−a, ak/d), and (N) and (ξ) at (+a, 0) and (+a, ad/k), and so forth to
tabulate the succeeding points constructed by Leibniz.

Given two points on the curve, he constructs the geometric mean of their
ordinates then sets his new point halfway between:

(x1, y1) and (x2, y2) →
(x1 + x2

2
,
√

y1y2

)
Repeating results for “binary divisions” of any constructed interval yields

dense points on a curve of type,

y(x) = ar x , (a is given, r can be determined)

It is an important distinction that this equation is a cartesian representation of
a curve constructed by Leibniz, not graphed by using cartesian coordinates.
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We view the “logarithmic curve” as an exponential curve:

The initial conditions require that r = d/k , and therefore:

y(x) = a ·
(

d
k

) x
a

The numbers x represent constructable points on Leibniz’s
horizontal line through O, and the corresponding numbers
representing ordinates are also constructable in the way
explained by Leibniz.

(Remember: the segments D and K were given without specified lengths. But
if they are presumed to have specified lengths they must be constructable,
otherwise the curve defined by Leibniz will not be constructable except in
theory. We shall see that Leibniz does presume a non-constructable ratio for
them: e, not constructable because it is a transcendental number.)
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Leibniz used y(x) and y(−x) to obtain his “catenary”:

z(x) =
a
2
·

{(
d
k

) x
a

+

(
d
k

)− x
a
}

He claimed his construction would yield a catenary.

But a catenary must be of the form:

z(x) = a · e
x
a + e−

x
a

2

Leibniz had to assign the ratio d/k = e to obtain a catenary!
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Internal evidence shows that he knew this.

Leibniz had already set a = 1 for his unit,

and he had to use d/k = e to get a catenary:

y =
ex + e−x

2
= cosh x

This is the only possibility for his claims about his construction
to be correct: for example, his construction of a tangent to the
curve, and his specification of a segment of equal length to a

portion of the curve (more about this in “Afterthoughts”).

How he came to all of this is a mystery!

Because....
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Ideas published after the Leibniz construction of 1691:

Lambert: 1761, introduced hyperbolic functions
and named them —

seventy years after Leibniz!!

Euler: 1748, published first “modern” calculus text,
Introductio in analysin infinitorum ,

presenting the first integrated theory of the natural log and
exponential functions
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But what was in the background for Leibniz?

Napier: 1614, Table of natural logarithm

Fermat: ∼ 1656,
∫

xn dx = xn+1/(n + 1), (n 6= −1)

Wallis: ∼ 1658, xp/q, “infinite methods” like,

π

2
=

2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · · · · · · ·

Saint-Vincent: 1647,
∫ dx

x
= logarithm
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And these also:

Nicholas Mercator: 1668, Series for the natural logarithm,

ln(1 + x) =
∫ x

0

dt
1 + t

= x − x2

2
+

x3

3
− x4

4
+ · · ·

Newton: 1676, Wrote to Leibniz about infinite series, including
something Leibniz apparently already knew,

ex = 1 +
x
1!

+
x2

2!
+

x3

3!
+ · · ·
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So we are left with these mysteries:

How did Leibniz infer the form of the catenary?

Leibniz scholars have supposed he deduced the catenary by
assuming it was the curve with deepest center of gravity.

Leibniz left a hint to that effect.

I have found no more evidence of variational technics in his
writing than for the theory of the exponential function.

But logarithms and exponential functions were “in the air,” and
Leibniz exploits them explicitly in his construction.
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Some Afterthoughts

I offer below some ideas about how Leibniz may have been led almost directly
to the analysis that underlay his construction. I write loosely in a way that
historians warn against: imposing present conceptions on actors of the past.

I use modern concepts and notation for functions and differentiation, when in
fact Leibniz did not write in the same terms. He illustrated much of his early
mathematics in geometric figures, common for mathematicians at the time.
But he was breaking away from the standards of the day, so it is possible that
although he wrote in one way, his thoughts were more advanced.

I will write more about this elsewhere to show how what I express below can
be rewritten in a mathematical idiom close to what Leibniz used in his
writings. I think the following ideas, when properly transcribed, would have
been within an easy reach for him. They show that the catenary problem can
be solved quite naturally by a route that exposes the logarithm and hyperbolic
cosine as central to the solution.
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An easy Route for Leibniz?

Leibniz would know, as Bernoulli did (see Ferguson), that:

dy
dx

=
s(x)

c
, (required for equilibrium)

[s(x) = vertical weight below (x , y), c = constant horizontal
tension]

Therefore: y ′′ = C
√

1 + y ′2, (C = 1/c)

=⇒ w ′2 = C2(1 + w2), (use w(x) = y ′(x))

=⇒ w ′w ′′ = C2ww ′ =⇒ w ′′ = C2w
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For Leibniz, C = 1

Leibniz would need to solve w ′′ = w

But he knew the power series for the exponential function:

E(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·

and that E ′ = E

He could guess a power series F (x) such that F ′′ = F .

Simply remove the even-numbered (or odd-numbered) terms
from the series for E !!
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Drop terms from the series for E to solve F ′′ = F :

F1 = 1 +
x2

2!
+

x4

4!
+ · · · = E(x) + E(−x)

2
≡ cosh x ,

F2 = x +
x3

3!
+

x5

5!
+ · · · = E(x)− E(−x)

2
≡ sinh x .

And so it follows that,

d sinh x
dx

= cosh x ,
d cosh x

dx
= sinh x .

And, because E is the exponential function (or by multiplying
the series), E(x)E(−x) = 1 so that,

cosh2 x − sinh2 x = 1
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Those results explain the constructions that Leibniz noted
for the tangent and arc length:

The prescription Leibniz gave for constructing his tangent line
implies:

y ′(x) =
√

y2 − 1

And arc length follows because,

s =
∫ √

1 + y ′2 dx =
∫

cosh x dx = sinh x =
√

y2 − 1

(The Cartesian representation (x , y) represents Leibniz’s point C on the
catenary. Integration is over the interval from (0, 1) to (x , y). To apply these

results to the illustration of the construction, see the next page for references.)
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Points of Interest in the Construction (see Illustration)

C = a typical point on the catenary.

OA is Leibniz’s “unit”, and

OA = CN = (C)(N).

Hypotenuse OR = OB = NC.

The following facts can be verified from equations on the
preceding page:

AR = arc ÂC .

The tangent at (C) is determined by the complementary angles
marked at R and τ .
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One Last Question for You

In 1761 Lambert gave the name “Hyperbolic Cosine” to the
function,

y =
ex + e−x

2
.

But can’t we say that in 1691 Leibniz had already called it
the Catenary?
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A Catenary Arch is Stable — Even one of Mud.

The compressive forces are in perfect alignment with the arch, as are
the tensions in a hanging chain.

Internet, Maxcorradi
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A Monumental Catenary Arch 631 Feet High

The Gateway Arch, St. Louis, Missouri

Internet
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These slides are on my web.

www.mikeraugh.org / LeibnizSlides

Contact:

Auranteacus@gmail.com


