THE INNKEEPER’S PROBLEM
MICHAEL RAUGH

ABSTRACT. A tale was once told of a Spanish innkeeper who
guessed the probability of randomly placing individual keys for
each room on separate hooks in such a way that each key would
wind up on the wrong hook. He counted the ways this could oc-
cur for an inn with a small number of rooms, and from this small
sample he inferred a correct three-figure estimate (/ 0.368) for his
inn of one hundred rooms. Here it is explained why his guess was
right. In the Afterword I reference two textbook formulations of
the same problem, named differently than the innkeeper’s problem,
and I outline their solution for comparison.

1. THE MANUSCRIPT

Believe it if you like. Some years ago I was privileged to review an
aging manuscript telling a tale about a Spanish innkeeper. The author’s
signature read “Don Vicente R—y—C de Seville’. Here is the innkeeper’s
table as recorded by Don Vicente, augmented with my caption.

Rooms | All Ways | Ways for Total Mismatch | Probability

1 1 0 70.0

2 2 1 105

3 6 2 1 0.3333
4 24 9 1 0.3750
5 120 44 1 0.3667
6 720 265 } 0.3681
7 5040 1854 1 0.3679

TABLE 1. The number of rooms in an inn and, for each
number, the various ways room keys can be hung on
hooks, and probability of total mismatch. Odd-room
probabilities increase, even-room probabilities decrease,
squeezing toward ~ 0.368. Inkeeper’s guess: the same
probability must hold for 100 rooms!!!
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I will continue to speak of an innkeeper, but of his true identity I have
many doubts, and I encourage you to do likewise. But do not doubt
the worthiness of the mathematics, which I present in the following
sections. In this section I summarize the setting of the problem as
given in the manuscript.

Here begins the tale told in the manuscript. With apparently little
else to do, the innkeeper with 100 rooms began reckoning. He asked:
How likely would it be to get every key on the wrong hook if he placed
them randomly?

Table (1) purports to be results from the innkeepers own calculations
expressing in the first column the numbers of rooms of an inn, then the
total number of “ways” (we would say permutations) for hanging the
keys, then the ways (permutations) for hanging keys that leave all
keys on the wrong hooks, then in the last column how likely a total
mismatch like that would be, or as the results imply, the probability of
a total mismatch assuming that all random arrangements are equally
likely. I have reported the table to give a flavor of the language of the
manuscript. The second column for example refers to factorials.

The manuscript was among linen and other household goods con-
tained in a walnut trunk ornamented with faded painted figures that
came over the Santa Fe Trail at an unknown date. This was shown
to me by its owner, whose family had long been residents of the old
village of Placitas north of the Sandia Mountains in New Mexico. 1
translated the text from the original Spanish, filled in gaps and made
a few corrections, converting formulations into contemporary mathe-
matical notation and methods.

The manuscript was clearly the work of a person of some knowledge
of mathematics, perhaps trained by Jesuits as suggested by some Latin
phrasing. Apparently, as seen in the table, the “innkeeper”, if indeed
there was one, knew enough algebra to calculate factorials for the num-
ber of ways (permutations) that n keys could be used freely to fill all n
slots. And he had to list somewhere the smaller but considerable num-
ber of permutations for which no key would be placed in its proper slot.
For example, as simple cases, he would have listed for two rooms the one
mismatched permutation (2, 1), for three rooms the two mismatched
permutations {(2,3,1),(3,1,2)}, for four rooms the nine mismatched
permutations {(2,1,4,3),(2,3,4,1),(2,4,1,3),...}, etc. These num-
bers progress in no obvious pattern, but progress rapidly they do, and
that is the problem.

This reckoning grows very tedious as the number of rooms increases,
hence the small number of entries in the table. I must suppose the
entries in the table for Rooms 6 and 7 (if not the entire table) were
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completed by Don Vicente based on the mathematics developed in his
manuscript. As you can imagine from the magnitude of the factorials in
the left-hand column, an actual enumeration would have been entirely
too tedious—I say prohibitive—for anyone other than a prodigiously
patient savant. If the innkeeper were a savant, I believe Don Vicente
would have reported on the unusual capabilities of his host, but there
is no such mention.

Another point in evidence is that the table entries are completely
accurate—not a single error in any entry. It is scarcely credible that an
idle innkeeper could have tabulated all of the totally mismatched per-
mutations, not to mention all of the permutations themselves, without
overcounting or undercounting at least one of the entries. I suspect that
Don Vicente himself corrected the table, or may even himself created
the table, tale and all. But I leave forensics to others.

I now state the surprising fact expressed by the innkeeper that the
table implies that for all inns with more than 7 rooms, the probability
of mismatching all the keys is approximately 0.368—more rooms would
change the result by little. This is an astonishing inference because,
though based on few examples, it is correct, and it allows the innkeeper
to estimate the probability for 100 rooms. Don Vicente states the
innkeeper based his inference on the fact that the right-most entries
of the table alternately increase and decrease, with the odd-numbered
entries increasing and the even-numbered entries decreasing.’

Tragically, the manuscript was lost in a fire that reduced all to
rubble—Don Antonio’s walnut trunk along with his eighteenth century
adobe home—and he has since moved north to Truchas, else would I
have provided a scanned image as an appendix. I have retained just
enough of my translation to write this tale. I proceed now with the
mathematics.

2. THE MATHEMATICS OF THE MANUSCRIPT

I begin by following Don Vicente’s logic to derive his formulation of the
problem dressed in contemporary symbolism. Consider a hotel with
k > 0 rooms at the inn. There are £ numbered keys and £ numbered
hooks for them behind the front desk.

Let pg, for an inn of £ rooms be the number of permutations for
which none of the k keys is on the right hook. Define py = 1.2 Then
for an inn of n rooms we can count the number of such permutations in

IThese tendencies I have noted with arrows in the table for ease of reading.
2This is like defining 0! = 1 to simplify some expressions.
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terms of the number of permutations for inns with fewer rooms, giving
us an equation called a recusion formula:

0 == ()

k=0

Eq. (1) is called a recursion formula because it determines p,, recur-
sively in terms of earlier terms py. The idea in Eq. (1) is that if exactly
k keys are distributed correctly, then exactly p,_ keys are distributed

n
incorrectly. There are ( k) ways to choose k rooms out of n rooms, so

there must be (Z) Pn_k Ways to get exactly k keys on the right hook.

In order to count the number of permutations of keys for which all
are hung incorrectly, we must subtract from n! all the permutations for
which at least one key is placed correctly. Eq. (1) does this.

We can simplify Eq. (1) by moving the summation over to the left
and absorbing p,, into it:

5 (o

k=0

Or even better, here’s an equivalent formulation obtained by dividing
n! out of all the binomial coefficients:

n

Dn—k 1 < . 1
2 P — A
2) Z(n—k)! Kl = k] (n—k)!

k=0

This is the form of the recursion formula we will use. We have an
equation that determines p, recursively, but we would like to have a
simple formula for p, just in terms of n. In the following sub-section
we find such a formula using a technique pioneered by Euler.

Eq. (1) is in essence the formulation achieved by Don Vicente.
We recognize it as a recursion formula for which solution methods
exist. But Don Vicente instead worked out progressive solutions for
P1, D2, ,P1o laboriously, and from these surmised a general solution,
a creditable achievement.

2.1. An Eulerian Solution of the Recursion Formula. The ex-
pression under summation in Eq. (2) is suggestive of the coefficients
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that arise in multiplying two power series. To see why, we need to do
the kind of thing Euler thought of. Define a function P(z) by incorpo-
rating the numbers pj, into a power series,

o0
Po n

n!
n=0

P(x) =

We’ll have to figure out a better way to express this function. But
first let’s see how the following equation gives us our recursion formula.

o (EE)(E) T

n=0 n=0

We take for granted Cauchy’s product rule for infinite series, which
says that we can multiply infinite series as though they were ordinary
polynomials, beginning with the constant terms and working through
increasing powers of x. For example, the term for 23 in the product on
the left-hand side of Eq. (3) works out to be,

pol pi1  pl  p3l) 4
(w MRS TR m)

Equating this coefficient with the coefficient of 23 on the right-hand
side of Eq. (3) yields the recursion formula for the case for n = 3
expressed by Eq. (2). The same idea works in general: equating the
coefficients of 2" on the left- and right-hand sides of Eq. (3) for any
value of n gives us the recursion formula of Eq. (2) for that same value
of n.

The second parenthesis in Eq. (3) is the power series for e*. So we

can re-write that equation:*
oo p o0
mn_ —x n
(4) g =e Z T
n=0 n=0

r oz 28 2 3
:<1—ﬁ+§—§+--->(1+x+m +at )

3The series converges on at least the interval (—1,1) because |p,| < nl.
4The operations are justified because the series all converge on the common
interval (—1,1), though of course they are not all restricted to that interval.
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The function expressed on the right-hand sides of Eq. (4) is called a
generating function for the coefficients on the left-hand side. It reduces
solving the recursion formula Eq. (2) to magical simplicity, as follows.

The product of the series on the right-hand side of Eq. (4) yields,

- " - - kl n
> = (Z<—1> k—)

n=0 \k=0

Therefore, by equating coefficients of equal powers of x on both sides
of the equation, we find that,

) B3 (-1

n!
k=0

Since p—? is the probability of getting all n keys on the wrong hook—
n

and since the alternating series converges very rapidly to 1 /e—we see
that the probability converges to 1/e ~ 0.368 as n — oo, the same
number inferred by the innkeeper.

3. AFTERWORD

I have left it to you to decide what’s true and false in the tale of
the innkeeper. But that there is a problem of mathematical interest
exposed therein, there can be little doubt.

According to Feller [1, 100], the problem has many variants going
back to a card-matching problem of Montmart of 1708. I have also
seen the problem as one of mismatching letters and envelopes. I first
learned of the problem as one of mismatching the first n integers with
numbered slots in Courant and Robbin’s What Is Mathematics? An
FElementary Approach to Ideas and Methods [2, 114-116]. T refer to the
recent edition augmented by lan Stewart.

In essence, the idea is to count without redundancy the number of
unique elements in the union of a finite number of sets. The compli-
cation is that any particular element of the union may belong to more
than one of the sets, so overcounting has to be nullified. By formulating
the problem in terms of probability, the proof in What Is Mathematics?
is the more straightforward. Let P(E) be the probability of an event
E. Courant and Robbins begin with the equation,

P(AUB)=P(A)+ P(B) - P(ANB)
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which follows from the fact that P(A) + P(B) counts P(AN B) twice.
Substituting the expression B U C' for B in the equation above and
expanding using the equation again yields,

(6) P(AUBUC)
= P(A)+ P(B) + P(C)
—P(ANB)—-PANC)—P(BNC)
+P(ANBNC)

The emerging pattern for generalization to an arbitrary number of sets
A, B,C,D,... is easily discovered, and Courant and Robbins leave it
as an exercise.

Courant and Johns’ approach (which see) is equivalent to Feller’s,
but Feller’s is expressed in general terms, and his method of counting
is explicit. I follow Feller here.

Let Ay, Ay, ..., A, be a collection of subsets of some larger set. Sup-
pose a is an element of the union U?:l Aj. If a belongs to exactly k of
the sets, then it appears k times among the sets Ay, As, ..., A,, and it

appears 5 times among the intersections of pairs of those sets, and

it also appears 5 times among the intersections of triplets of those

sets, and so forth. The trick in the method is to play these numbers
off against one another using the binomial theorem.?

To state this precisely, let ), j = 1,... n represent the set of all
j-way intersections among the sets Ay, Ay, ..., A,. Then a appears in

k .
exactly ( ) of the sets of A for j =1,...,k, but a does not appear
J

in any of the sets AY), for j > k.
Now we play the numbers against one another. Consider the alter-
nating sum,’

n

(7) S(A1, Ag,y .. Ay) =Y (~ 1))

j=1

SUse the fact that (1 —1)F = Zfzo(fl)j <k) =0.

6This is a combinatoric equivalent to the generalization of Eq. (6).
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where A denotes the combined sum of the numbers of elements in all

, k

the sets of AU), a sum that will count the element a exactly ( . | times
J

for j =1,...,k, and not at all for j > k. Therefore, what a contributes

to S(Al,AQ, c. ,An) iS,

i(—l)jl(l{) —1-(1-1)F=1

Since a represents a typical element of the union U?Zl Aj, and it gets
counted only once in S(A;, A, ..., Ay), it follows that S(Ay, As, ..., Ay)
counts each element of the union only once. This proves that Eq. (7)
cancels all overcounting and counts ezactly the number of elements in
U?:1 Aj :

This method of counting the number of elements in a union of sets,
some of which may be overlapping, is not so obvious. But once we have
the counting formula in hand, it can be applied to solve the innkeeper’s
problem.

Solving inkeeper’s problem by counting. Let A;,j = 1,...,n
represent the set of all permutations of the set of integers 1,...,n such
that the integer j appears in position j. This is analogous to the set of
all permutations of n keys such that at least the j-th key is correctly
hung on the j-th hook.

Note that for a permutation to be in A;, we require only that the
integer j appear in the j-th position—we do not care how the other
integers are permuted. If n > 1, some permutations in A; will have
any of the integers other than j placed correctly, too. For example,
A; contains the permutation with all of the integers 1,...,n placed
correctly.

Let A represent all the m-way intersections of sets from among
the sets Ay, As, ..., A,. Such an intersection can be specified by A;, N
---MN A, , where {j1,...,Jm} is a selection of m distinct integers from
among the first n positive integers. This intersection certainly is not
empty since by definition each of the sets Aj, contains the permu-
tations in which all numbers {ji,...,jn} are place correctly, and we
can count how many such permutations there are: altogether there are
(n—m)!, since the remaining integers among 1, ..., m can be permuted
arbitrarily.
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n
Moreover, there are ( ) ways of selecting m-way intersections of
m

sets from among the sets Ay, As, ..., A,. So the combined sum of all
of the elements in these various intersections, is

) _ (n_m)!(n> ol

m/)  m!

Sustituting this result in Eq. (7) tells us that the number S of ways
that at least one integer can be placed correctly is,

~ 1
S=nl) (-1 =
— m)!

Because there are n! possible permutation of the integers 1,...,n, and
we may suppose that all the permutations are equally likely, the prob-
ability of at least one integer being placed correctly is,

S & 1
w2

m=1

Taking the complement shows that the probability of no integer being
placed correctly is,

Interpreting this in terms of the innkeeper’s problem—keys instead of
integers—we see that this is the same result as in Eq. (5).

You may now compare the textbook solutions of the total-mismatch
problem—mnamed here the innkeeper’s problem—with the one I have
given based on Don Vicente’s recursion formula. There is something to
be said for each approach. In my opinion, the method used in Section
(2.1) arises step-by-step more naturally than the textbook solutions, if
you are familiar with analysis. In addition, the method of generating
functions reminiscent of Euler has wide applicability in analysis, so
that method is perhaps more illustrative of a general technique. And,
remarkably, it is an example of the use of analysis to produce a discrete
result about permutations. What’s your opinion?
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