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Jakob Bernoulli’s Summation Formula

(1655–1705, Wikimedia Commons)

Bernoulli specified the form of the coefficients aj in a general
polynomial formula for summing powers of the integers:

n∑
j=1

jk = a0nk+1 + a1nk + a2nk−1 + · · ·+ ann
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We will “rediscover” Bernoulli’s formulation.

Bernoulli credited Johann Faulhaber, “The Calculator of Ulm,”
for discovering specific formulas for k = 1, · · · ,17.

Jakob Bernoulli’s formula was for general k .

Certain constants in Bernoulli’s formula are known as Bernoulli
numbers, named by Abraham De Moivre (& Leonhard Euler).

Our derivation follows easily from inspecting a table of formulas.
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Johann Faulhaber

(1580–1635, Wikimedia Commons)

Faulhaber, surveyor and instrument maker, collaborated with
Kepler, supervised publication of Briggs’s logarithms in

Germany, later famed for summation formulas for powers of
integers. Donald Knuth broke secret code in which Faulhaber

gave formulas correct up to k = 23.
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We will need the Binomial Coefficients.

(Permission by Presidency of Turkey Manuscripts Institution, see Acknowledgment)

Predating “Pascal’s Triangle”, a MS copy dated 1324 by
nineteen-year-old Islamic mathematician. (Article in AMS

Notices of Dec 2013) Earliest commentary however from Hindi
mathematician Halayuda from 10th-century.
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Pascal’s Triangle and Binomial Coefficients

(Wikimedia Commons)

The “nth” row gives coefficients for (a + b)n:

(a + b)n =
n∑

j=0

(
n
j

)
an−jbj ;

(
n
j

)
=

n!
j!(n − j)!

The symbol is due to Ettingshausen (1796–1878).
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Three Things to Keep in Mind

1) If p(x) = b0xk + b1xk−1 + · · ·+ bk is a polynomial with
constant coefficients, and p(x) = 0 for infintely many distinct
values of x , then p(x) = 0 for all real values of x . (Why?) So, if
g(x) is another polynomial such that f (x) = g(x) for an infinite
number of integers, then equality holds for x ∈ R, i.e., all real
values of x . (Why?)

2) Suppose Sk (n) is a polynomial such that Sk (n) =
∑n

j=1 jk for
a fixed non-negative integer k and all positive integers n, then
by (1), Sk (x)− Sk (x − 1) = xk , for all x ∈ R. (Why?)

3) For any function F defined for all non-negative integers,∑n
j=1 [F (j)− F (j − 1)] = F (n)− F (0). The sum is said to

telescope, i.e., all but the first and last terms cancel out. (Why?)
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First Summation Method (A More Efficient One will Follow)

Suppose we already have a formula, say,

n∑
j=1

j =
1
2

n2 +
1
2

n

Then sum for j = 1 to n the identity j3 − (j − 1)3 = 3j2 − 3j + 1:

Telecoping sum: n3 − 03 = 3
n∑

j=1

j2 − 3
n∑

j=1

j + n

Insert the above for
∑n

j=1 j to get:

n∑
j=1

j2 =
1
3

n3 +
1
2

n2 +
1
6

n
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First Method Repeated

Now we have,

n∑
j=1

j =
1
2

n2 +
1
2

n and
n∑

j=1

j2 =
1
3

n3 +
1
2

n2 +
1
6

n

So now sum the identity j4 − (j − 1)4 = 4j3 − 6j2 + 4j − 1.

Get: n4 − 04 = 4
n∑

j=1

j3 − 6
n∑

j=1

j2 + 4
n∑

j=1

j − n

Inserting the above, find:

n∑
j=1

j3 =
1
4

n4 +
1
2

n3 +
1
4

n2 + 0n
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Continuing the process:

(Notes of a Twentieth Century Teenager)∑
nk is used as shorthand for

∑n
j=1 jk .

There is a progression in coefficients from one line to the next.
Can you see it? (Try integration!)
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Invalid integration, but try it!

Pick two consecutive summation formulas from the table.

Pretend that n is a continuous variable, then integrate the first
equation and compare with the second equation:

Let’s see what we get.



TITLE&INTRO FIRST METHOD TRY INTEGRATION GENERALIZATION & BERNOULLI NUMBERS THE FORMULA CONTACT AFTERNOTES

Here we go:

∑∫
n3 =

1
4
∫

n4 +
1
2
∫

n3 +
1
4
∫

n2 + 0
∫

n

∑ n4

4
=

1
4

n5

5
+

1
2

n4

4
+

1
4

n3

3
+ 0

n2

2

The result is missing (only) the linear term:

∑
n4 =

1
5

n5 +
1
2

n4 +
1
3

n3 + 0n2 − 1
30

n
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Why the near miss?

Consider the previous summation formula as a polynomial,

DEFINED AS: S3(n) ≡
1
4

n4 +
1
2

n3 +
1
4

n2 =
n∑

j=1

j3

Then the polynomial S3(n) satisfies the following equation for
infinitely many integer values of n:

S3(n)− S3(n − 1) = n3, n ∈ N>1

Therefore it is satisfied for all real values of x :

S3(x)− S3(x − 1) = x3 x ∈ R

This polynomial equation can be integrated!
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Now integration is valid, and we can sum the result.∫ j

0
S3(x)dx −

∫ j

0
S3(x − 1)dx =

∫ j

0
x3 dx =

1
4

j4

Rewrite the second integral:∫ j
0 S3(x − 1)dx =

∫ j−1
−1 S3(x)dx =

∫ j−1
0 S3(x)dx +

∫ 0
−1 S3(x)dx

So for some constant C3,[∫ j

0
S3(x)dx −

∫ j−1

0
S3(x)dx

]
+ C3 =

1
4

j4

Sum the equation(s) for j = 1 to n to find the missing term:∫ n

0
S3(x)dx + C3n =

1
4

n∑
j=1

j4
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This efficient technique works in general.

If Sk (n) =
∑n

j=1 jk , then∫ n

0
Sk (x)dx + Ckn =

1
k + 1

n∑
j=1

jk+1

Therefore,

n∑
j=1

jk+1 = Sk+1(n) = (k + 1)
∫ n

0
Sk (x)dx + (k + 1)Ckn

By convention, we define the Bernoulli Numbers:

Bk+1 = (k + 1)Ck .
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Again, in terms of Bernoulli Numbers:

Given Sk (n) =
∑n

j=1 jk , integrate to get,

n∑
j=1

jk+1 = Sk+1(n) = (k + 1)
∫ n

0
Sk (x)dx + Bk+1n

The integration is easy, but we need to know the Bernoulli
numbers,

B0,B1,B2,B3, · · · .

We’ll get back to this, so note for later that the integration above
shows that for k > 0, Sk (n) has no constant term, therefore,

Sk (x)− Sk (x − 1) = xk =⇒ Sk (−1) = 0, for k > 0.
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Repetition leads to the Bernoulli Summation Formula

Instead of computing the Bernoulli numbers, leave their
symbols in place. Iterate to get Bernoulli’s Summation Formula:

n∑
j=1

jk = Sk (n) =
k∑

j=0

k !
j!

Bj
nk+1−j

(k + 1− j)!
=

1
k + 1

k∑
j=0

(
k + 1

j

)
Bjnk+1−j

Symbolically,

n∑
j=1

jk =
1

k + 1

{
(n + B)k+1 − Bk+1

}
; Bm → Bm
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Use Arithmetic to Compute Bernoulli Numbers

They’re tedious to calculate, and you can find them in tables.

But let’s do this!

Begin with S0(n) =
∑n

j=1 j0 = n. Integrate:

S1(n) = 1 ·
∫ n

0
S0(x)dx + B1n =

1
2

n2 + B1n

Setting n = −1 and using S1(−1) = 0 yields,

0 =
1
2
− B1 =⇒ B1 =

1
2

=⇒
n∑

j=1

j1 =
1
2

n2 +
1
2

n
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Let’s do it again!

Start with,
n∑

j=1

j1 = S1(n) =
1
2

n2 +
1
2

n

Integrate to get,

S2(n) = 2
∫ n

0
S1(x)dx + B2(n) =

1
3

n3 +
1
2

n2 + B2n

Setting n = −1 again and using S2(−1) = 0 yields,

0 = −1
3
+

1
2
− B2 =⇒ B2 =

1
6

=⇒
n∑

j=1

j2 =
1
3

n3 +
1
2

n2 +
1
6

n

Doing this repeatedly (starting with
∑

n0 = n) will give you the
table of 11 summation formulas shown earlier.
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The First Eleven Bernoulli Numbers
They are the coefficients of n in the earlier table for sums:

B0 = 1

B1 =
1
2
, B3 = B5 = B7 = B9, · · · = 0

B2 =
1
6
,B4 = − 1

30
,B6 =

1
42
,B8 = − 1

30
,B10 =

5
66
, · · ·

For odd j > 2,Bj = 0; for even j , the signs alternate. (Proved in
Afterwords)

Tables often give B1 = −1/2, in which case the index of
summation runs up to n − 1 (instead of n):

n−1∑
j=1

jk =
1

k + 1

{
(n + B)k+1 − Bk+1

}
; Bm → Bm, B1 = −1/2
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See further theory in Afternotes for self-study.

After the formal conclusion of this lecture you are guided
through proofs of the following:

Every Bernoulli Summation Formula for even 2n > 1 is
factorable by n(n + 1)(2n + 1), and for every odd 2n + 1 is
factorable by n2(n + 1).

The Bernoulli Numbers B2k+1 = 0 for 2k + 1 > 1, and the B2k ’s
are non-zero and alternate in sign for 2k > 0. Proof of the latter
is by inspection of Euler’s amazing formula for ζ(2k).

The Bernoulli Summation Formula is derived using the power
series expansion for ex , demonstrating an analytic reason for
defining B1 = −1/2.

Euler’s and Riemann’s zeta functions are discussed in brief,
without proofs. Some literature is referenced.
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References 1

Bernoulli Numbers and the Bernoulli Summation Formula are
classical topics with innumerable references. For a good start
see Wikipedia at:

http://en.wikipedia.org/wiki/Bernoulli_number

http://en.wikipedia.org/wiki/Faulhaber%27s_formula

For a swift though magical (unmotivated) approach akin to the
integration in this presentation, see also,

Apostol, Tom, Calculus, Vol. 1: One-Variable Calculus, with an
Introduction to Linear Algebra, 2nd edition, John Wiley & Sons,
Prob. 35 on p225.

(More references follow in the Afternotes.)

http://en.wikipedia.org/wiki/Bernoulli_number
http://en.wikipedia.org/wiki/Faulhaber%27s_formula
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Afternotes for Self-study Online

The theory of this section is sketched with details of proofs left
for the reader, or, in the case of the Euler and Riemann zeta
functions, simply alluded to. Further study will require going to
the literature.

All the material is classical. Some references are given; others
abound online and in texts.
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Factors of the Bernoulli Summation Formulas

Here I use facts about the Bernoulli summation formulas, Sk (n),
developed in the lecture, e.g., that all Bernoulli summation
formulas are factorable by n. In this section we assume k > 0.

That each Bernoulli Summation Formula is evenly divisible by
n(n + 1) follows from the fact that Sk (−1) = 0.

Now I show that S2k (−1/2) = 0, from which divisibility by
n(n + 1)(2n + 1) follows: S2k (x)−S2k (x − 1) = x2k implies that∑n−1

j=0 [S2k (−j)− S2k (−j − 1)] = −S2k (−n) =
∑n−1

j=1 j2k . So
−S2k (−n) = S2k (n − 1). Setting n = 1/2, the result follows.

You will see on the next slide that for all odd 2k + 1 > 1, the
linear coefficient for S2k+1 = 0. It follows that all such S2k+1 are
evenly divisible by n2(n + 1).
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Vanishing of B2k+1 for 2k + 1 > 1

From the previous slide, −S2k (−n) = S2k (n − 1). Since the
right-hand side is the polynomial for

∑n−1
j=1 j2k :

S2k (n) + S2k (−n) = n2k

So, from the symbolic form of the summation formula (lecture):

1
2k+1

∑2k
j=0
(2k+1

j

) {
1 + (−1)2k+1−j}Bjn2k+1−j = n2k

The braces vanish for even j and B1 = 1/2, so for all k > 1,∑k−1
j=1

(2k+1
2j+1

)
B2j+1n2k−2j = 0. So, B3 = B5 = B7 = · · · = 0
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Introducing Euler’s Zeta Function
Instead of summing powers of the integers, we can sum powers
of their reciprocals taking the upper limit to be∞:

ζ(k) ≡
∞∑

j=1

1
jk
, k ∈ N>1

This is Euler’s zeta function. Euler found the amazing formula,

ζ(2k) =
∞∑

j=1

1
j2k = (−1)k+1 (2π)

2kB2k

2 · (2n)!

So the even-numbered Bernoulli numbers have to alternate in
sign. Euler connected his ζ(k) to the prime numbers by noting,

ζ(k) =
∞∏

j=1

1
1− 1

pk
j

, pj = 2,3,5,7,11, . . .
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Riemann’s Zeta Function

With phenomenal insight, Bernhard Riemann recognized that
Euler’s zeta-function can be extended into the complex plane,
giving us the Riemann zeta function:

ζ(s) ≡
∞∑

j=1

1
js
, s ∈ C6=1

His astonishing conjecture, the Riemann Hypothesis, is that
ζ(s) vanishes only on the vertical line Re s = 1/2, except for
the trivial zeroes on the negative real axis:

ζ(−k) =
Bk+1

k + 1
, k ∈ N>0

So ζ(−2k) = 0, k ∈ N>0. Again the Bernoulli numbers arise
intriguingly, with distinct behaviors for odd and even integers.



TITLE&INTRO FIRST METHOD TRY INTEGRATION GENERALIZATION & BERNOULLI NUMBERS THE FORMULA CONTACT AFTERNOTES

Bernhard Riemann

(1826–1866, Internet)

Riemann Integral, Surfaces, Hypothesis, ....
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There is an analytic reason for defining B1 = −1/2

Since ex =
∑∞

k=0
xk

k! , we can write:

n−1∑
j=0

ejx = n +
∞∑

k=1

n−1∑
j=1

jk

 xk

k !
(n > 1)

The left-hand side is a geometric progression, summed as,

enx − 1
ex − 1

=
enx − 1

x
· x

ex − 1

Expand the second fraction on the right as a power series:

x
ex − 1

=
∞∑

j=0

bj
x j

j!
,
{

bj : j = 0, . . . ,∞
}

TBD
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Analysis 1

Then expand the first fraction on the right,

enx − 1
ex − 1

=
enx − 1

x
·
∞∑

j=0

bj
x j

j!
=

∞∑
j=0

nj+1

(j + 1)!
x j ·

∞∑
j=0

bj
x j

j!
=

b0

0!
· n

1!
x0 + (

b0

0!
· n2

2!
+

b1

1!
· n

1!
)x1 + · · · =

∞∑
k=0

(
k∑

i=0

bi

i!(k + 1− i)!
nk+1−i

)
xk =
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Analysis 2

Remembering that the coefficient of xk/k ! for k ≥ 1 was,n−1∑
j=0

jk

 xk

k !

We can now compare it with,(
k∑

i=0

bi

i!(k + 1− i)!
nk+1−i

)
xk =

(
1

(k + 1)

k∑
i=0

(
k + 1

i

)
bink+1−i

)
xk

k !

Therefore,

n−1∑
j=0

jk =
1

k + 1

k∑
i=0

(
k + 1

i

)
bink+1−i
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An Analytic Reason for Defining B1 = −1/2

We have derived two nearly identical summation formulas:

n−1∑
j=0

jk =
1

k + 1

k∑
i=0

(
k + 1

i

)
bink+1−i

n∑
j=0

jk =
1

k + 1

k∑
i=0

(
k + 1

i

)
Bink+1−i , (B1 =

1
2
)

Subtract n from the second equation and compare with the first
to conclude that b1 = −1/2 and bi = Bi for all i 6= 1.
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The Generating Function for the Bernoulli Numbers

So, with the definition B1 = −1/2, we can write:

x
ex − 1

=
∞∑

j=0

Bj

j!
x j

The expression on the left-hand side of the equation is known
as the generating function for the Bernoulli numbers.

Applications of Bernoulli numbers and polynomials are
widespread.

References follow.
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References 2

For Bernoulli numbers in number theory, see the extensive treatment in Henri Cohen’s
Number Theory, Vol II: Analytic and Modern Tools, Springer, Ch. 9, “Bernoulli
Polynomials and the Gamma Function.”

The Euler-Maclaurin Summation Formula, discussed by Cohen, uses Bernoulli
numbers and yields the Bernoulli Summation Formula as a trivial case.

An excellent treatment of Euler-Maclaurin, discovered first by Euler, is given by Konrad
Knopp in Theory and Application of Infinite Series (Dover) — a wonderful inexpensive
book.

Euler found Bernoulli numbers in various series expansions and exploited their
fortuitous properties to obtain his Summation Formula. See V. S. Varadarajan “Euler
and His Work on Infinite Series,” Bulletin of the AMS, Vol 44, No 4, Oct 2007 and Euler
Through Time, AMS 2000, Chap.4.
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References 3

A fine treatment of Euler’s formula for ζ(2k) is given in Richard Courant and Fritz
John’s Introduction to Calculus and Analysis, Vol 1, Interscience Publishers, 1965.
(See Appendix II.1, “Bernoulli Polynomials and their Applications.” Their “Bernoulli
polynomials” are slightly different from the summation polynomials of the lecture.)

Euler, following De Moivre, referred to the constants in his formula for ζ(2k) as
Bernoulli numbers. For an additional treatment leading to Euler’s formula see Graham,
Knuth and Patashnik’s Concrete Mathematics: A Foundation for Computer Science,
2nd ed, Addison Wesley 1998. See Chap. 6.5, “Bernoulli Numbers,” Eq. 6.89.

Dunham provides one of the approaches Euler made to summing specific instances of
the series above in his Euler: The Master of Us All, MAA 1999. (See Chapter 3, “Euler
and Infinite Series.”

For discussions about Euler’s methods of analysis, particularly summation, see Ranjan
Roy, Sources in the Development of Mathematics — Series and Products from the
Fifteenth to the Twenty-first Century, Cambridge 2011, various pages.
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Leonhard Euler

(Euler portrait by Handmann 1753, Wikimedia Commons)

“Read Euler, Read Euler. He is the master of us all.” (Laplace)
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