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ABSTRACT. So my friend Zenau says to me, Mike, have you heard
the problem about the four bugs? They start at the vertices of a
square mile, and each flies toward the bug counterclockwise from
itself. Each flies at a steady rate of 1 mile per hour, each always
re-orienting to aim directly at its target bug.

Feeling pretty confident I said, sure Zeneau, the sides shrink at
the rate of 1 mile per hour; it must take an hour for all to catch up
at the center of the square, assuming they don’t butt heads after
traveling exactly one mile. This is a well-known problem.

Aah, Zeneau says, that’s cute about butting heads, but there’s
more to this problem than that. I see you don’t know what the
problem really is.

Zenau can be a pest with questions, but he usually makes a
good point. Hmmm, said I, and so this story began....

1. INTRODUCTION

Let me tell you Zenau’s joke — because, mathematically speaking, it
is a kind of joke. I'm afraid I won’t tell it in the same crisp way he
would do. Let me put it this way:!

The bugs have to keep flying at a steady rate, let’s say v miles per
hour — each toward the one counterclockwise from itself. Assume that
the intial gap between them is Ly miles. So they will close the gaps
between themselves in L /v hours after traveling Lo miles. At an initial
gap of 1 mile and rate of 1 mph, the bugs would meet after one hour
of flight. Seemed like a good-enough argument to me.

There’s a similar problem. Two trains are ninety miles apart on a
straight track and heading toward one another, the one at 30 miles
per hour and the other at 60 mph. A fly starts at the headlight on

Date: September 27, 2012.

!The idea for this note was hatched in conversations with Lewis Mingori at the
LACES Calculus Camp in April 2012 and discussed afterwards to the point of
exhaustion, a situation comparable to a problem faced by the four bugs. Apropos,
I thank Prof. Mingori for pointing out unintended bugs in previous drafts.
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one of the engines and flies at 70 mph back and forth between the
headlights of the two engines. How far does the fly travel before the
trains meet? Assuming the fly has magical powers and can reverse
direction instantaneously, then the answer is easy: 70 miles! That’s
because the trains are closing their ninety-mile gap at 90 mph, so they
meet in one hour, and during that time the fly is going 70 mph —
ergo the fly flies 70 miles before oblivion. Right? We’'ll reconsider this
problem in the Conclusion.

There is a difference between the two problems: The fly always trav-
els along a straight line, but the bugs do not. So, what kind of path
must the bugs follow? And does this make a difference? Let the bugs
fly while we answer this question and figure out what Zeneau had in
mind.

2. THE PURSUIT PATH

I reason that, since the bugs start at the corners of a square of side
Ly miles, and each flies at the same constant rate directly toward the
counterclockwise bug, they must continue flying in a square formation,
and the side of the square must shrink steadily at the constant rate of
v miles per hour.! (Superscripts hereafter refer to endnotes.)

This implies (does it not) that the bugs will collide at the center in
Lo/v hours. If so, the semi-diagonals of the square must shrink steadily
too, in fact at the rate of v/v/2 mph. This is geometry.

So if we let () be the length of a semi-diagonal at time ¢ hours,
then we should have,

%t; ro =1r(0) = % (miles)

Let’s make it easy to keep it straight which bug we’re talking about.
In counterclockwise order, we have Fiery, Moonbeam, Witchcraft and
Streak. Let’s assume they’re Ladybugs, which are actually beetles not
bugs, but we're pretending. Let’s pay attention to just one of them,
the one called Fiery, who will be chasing Moonbeam. We will derive
Fiery’s pursuit path.

The center of the square will remain fixed during the entire operation.
Suppose it’s located at the origin. And let the radius vector from the
origin to Fiery be R(t), so that |[|R(t)|| = r(t).

Notice that Fiery, in order to always fly directly at Moonbeam, must
constantly adjust her direction of flight to make a fixed angle of forty-
five degrees to her radius vector from the origin. As we shall see, this

(1) r(t) =ro—
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is characteristic of the type of flight path Fiery follows. To determine
this path, we use polar-coordinate notation for R(t),

R(t) = r(t) (cosO(t),sinb(t))
rendering R in rectangular coordinates, whereby?

(2) R = 7 (cos 6, sin 0) + 6 (—sin 6, cos /)

Since R is Fiery’s velocity vector, and she is flying at the rate of v
mph,

. . 2 .
(3) UQZR‘R:f’2+T2(92:%+T202

Therefore, incorporating Eq. (1),

. v 1 v
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But wait! Since this operation is supposed to end at ¢ = 1/v when
Fiery and Moonlight supposedly will meet Witchcraft and Streak at the
origin, by that time (as evident in Equation (4)) Fiery’s radius vector
is spinning around the origin infinitely fast! But surely it’s impossible
for Fiery to make an infinite number of revolutions before completing
her one-mile journey! Yet it seems, if she could actually do it, that
she will close the one-mile gap between herself and Moonbeam at time
t = 1/v — after having spun around the origin an infinite number of
times and be infinitely dizzy.

So here is one problem with the Four Bugs Problem, but only the
first (and lesser) problem. Let’s consider this one for a moment.

Fiery may be small, but she does have mass, say m mils. So consider
this. As you can see from Equation (4), during Fiery’s flight, her rate
of revolution around the origin increases without limit, and at the same
time her distance from the origin shrinks to zero. The force she must
exert to counteract the increasing outward force to stay on track must
also be unlimited. We’ll calculate that force in the concluding section
(using Newton’s F = mA = mR), but it’s obvious that because she’s
spinning faster and faster in tighter and tighter loops, that the force
she needs to stay on track increases without limit as she approaches
the origin. Fiery would have to be fiery indeed!

But, alas, bugs do not have the ability to generate unlimited force.
So here’s Problem Number 1. These four bugs can’t possibly stay on
course to finish the operation. They are of small mass, but even so



4 MIKE RAUGH (©)2012

the forces they must resist to stay on course increase to an amount
they cannot handle, and they must eventually fly apart. This in itself
is a pretty good joke, but no big deal really. Mathematicians can get
around a little problem like that.

We just idealize the bugs as points with zero mass. Poof! This
converts the problem from one of real bugs of mass m and finite ca-
pabilities, to weightless point models.®> We reformulate the problem:
if four points of zero mass labeled Fiery, Moonbeam, Witchcraft and
Streak, move at a constant rate towards one another in the manner
specified for the Four Bugs, then how long would it take the points
to meet at the origin? This purely mathematical problem should be
easier to solve.

But Zenau is always full of surprises, and Problem 2 lies ahead. Look
again at Equation (4); it’s inconsistent with the idea that the bugs meet
at the center after a flight time of 1/v. The equation for 8(t) blows up
at t = 1/v, so the domain of #(t) is a half-open interval that excludes
t = 1/v. Let us rewrite the equation with this fact made explicit:

. v 1 v Ly
5 f=—-=—— 0<t<=2
(5) V27 roV/2 — ot v

This implies that the route that Fiery flies is not defined for t = Ly /v.
Even the newly branded firebrand Fiery, modeled as a massless point,
can’t get to the origin on a path determined by the statement of the
problem. This may be non-intuitive, but there it is! The problem was
posed with the implication that the terms defined a solution, but they
don’t. This is the big problem with the Four Bugs Problem.

It is simply a fact that the condition set for Fiery and her three
companions, that they chase directly toward each other, excludes the
possibility that they can fly for the full flight time of T' = Lo/v hrs.
No flight path exists on which the idealized point-bugs can always fly
directly toward one another and also wind up together at a single
point. The most they can do is keep going for time ¢ € [0, Lo/v),
spinning infinitely around the origin without ever reaching the origin.
This follows quite directly from Equation (4) and is expressed explicitly
in (5). Strictly speaking, the problem is ill posed! (Or at least posed in
a misleading way.) The possibility of confusion arose because we were
led to think about bugs in the real world actually coming together
somewhere, but we wound up having to solve a differential equation,
something definitely not in the real world.
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This is Zenau’s joke, an odd one perhaps, but he’s a mathematician.
Let’s continue the discussion, compare the Four Bugs problem to simi-
lar problems in the next section, and see whether there’s a way around
the problem.

3. CONCLUSION

It turns out that this famous problem, in which the common answer
given is that the four bugs meet at the center after flying for a total
time T" = Lg/v, is not well posed — the solution curves never meet.
The problem illustrates the care needed in distinguishing between what
can happen in the “real-world” and what a mathematical model may
say can happen. The solution involves analysis on the continuum,
and that’s about as far from reality as you can get.*Before getting to
some proposed exercises and concluding, let’s make some comparisons
with two other problems. First, the problem of the fly going back and
forth between approaching trains mentioned in the Introduction. The
supposition is that the fly can reverse directions instantaneously and
maintain a constant speed of 90 mph. A material fly certainly cannot
do this, not even once, since it would require infinite force to make each
reversal.

So we formulate the problem as a fly modeled as a point of zero
mass, bouncing back and forth between approaching trains. This is
how most mathematicians would think of it. Setting the model within
the continuum on an interval I equal in length to the starting distance
between the two trains, say [(I) = D miles, the problem implies a set of
turn-around points on the interval {P; € I,i = 1,00}, representing the
respective positions of the two trains where the fly meets one of the two
approaching trains and reverses motion. The turn-around points are
determined by the condition that the respective intervening intervals of
lengths d; (where d; = | Pi11 — P;|) can be traversed at the rate specified
for the fly. But note that the point of the interval representing where
the trains collide is not a turn-around point.

We can express the total time T of traversal of the “fly” covering the
intervals d; (i = 1,00) as

. d; D
T=2 0%

where, v is the speed of the fly, D is the starting distance between
the trains, and R is the combined rate of the two trains approaching
each other. We know that the series sums to D/R because the terms
{d;/v, i = 1,00} are times spent by the fly traversing the consecutive
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turn-around intervals, and hence the partial sums of the series must
increase monotonically to the total time allowed for the fly’s flight,
namely the time it takes the two trains to meet: D/R. Therefore, we
can exercise the privilege of mathematicians and define the “distance
the fly travels” by

= D
6 S = di=v-—
(6) ; i 7

This mathematical formulation of the problem allows you to say that
the infinite series implied by the fly’s turn-around points converges to
vD/R, but it does not allow you to conclude that the fly actually
winds up at the collision point, although you may say so with a wink.
Plugging in the data given in the Introduction (D = 90, v = 70 and
R =90), we get the result for that case: S = 70.°

The solution is sophisticated because it rests on the theory of infinite
series and thereby the continuum. Moreover, depending on how you
read the theory, you can conclude the fly never actually travels the
full distance given by the sum of the infinite series, since none of the
turnaround points is at the collision point — and the fly can reach only
to distances expressed by partial sums of the infinite series in Eq. (6).
Or you can say in terms of mathematical convention that the fly travels
a full distance equal to the limiting sum of the series. But then we’re
talking about mathematical conventions and points we call a “fly,” not
about trains and flies.

Lets compare this with the famous Achilles Paradoz of Zeno. Achilles,
according to myth, was the fastest runner in ancient Greece. He chased
a tortoise but could never catch up to it because, first he must reach
the point where the tortoise started, at which time the tortoise will
have advanced and Achilles must then run to that point, and so forth.
Since this process of catching up must go on infinitely often, and it is
impossible for a man to do anything infinitely often, Zeno concludes it
must be impossible for Achilles to ever catch up.

Here again we encounter a categorical difference between the “real
world” in which a supposed person (Achilles) chases after a live tortoise,
and the mathematical continuum. To help make the distinction clear,
suppose you pencil a line segment with Achilles and the tortoise in
their starting positions at the endpoints. Then extend the line segment
to where the tortoise gets at the time Achilles arrives at the starting
point for the tortoise. Then repeat the marking of tortoise points that
thereafter are reached in sequence by Achilles. We know from real-
world experience that Achilles will catch up to the tortoise after the
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tortoise reaches a short distance farther away on the extended line. So
there seems like there must be an infinity of points crowded ever more
closely to the point where Achilles catches up. But what does that
mean? The pencil point is too fat for you to mark all the points, and
you don’t have infinite time for it anyway. Neither is there a machine
in the world that can pick out a perfect point on a perfect line or have
time to mark an infinite number of perfectly distinct points. Or if there
are such things, I sure don’t know about them.

So where does this infinity come from? Even in set theory, we need
an aziom for infinity, we can’t just assert that there is an infinity.®

Zeno puts Achilles and the tortoise into the realm of pure numbers
(to us, the continuum) and thereby confounds reality with an abstract
mathematical model of a line. But we can resolve this in modern terms
by starting with the assumption that although the original problem is
postulated in the real world, we will model it mathematically as a
problem in analysis.

Imagine Achilles as a function that relates positions on the real line
to time t > 0 represented as a real number, such as A(t) = vt, where v is
the running speed of the “person” Achilles. To illustrate how abstract
this simple model is, note that the function representing Achilles is
in fact a set of ordered pairs: given v € R.g, 4, := {(t, A(t)) | t €
R>o, A(t) = vt}. In this mathematical world, the function “Achilles”
covers a continuum of points beyond the origin for any ¢t > 0. If
the turtle 7" moves at rate ¢ > 0 mph and starts at a distance d >
0 from Achilles, and we model the turtle as Ty := {(t,T(¢)) | t €
R>o,T(t) = d + ¢t}, then Achilles will meet the turtle at time ¢ =
d/(v — ¢). Not a paradox in this mathematical idealization, and not a
perfect description of reality either.” This solution of Zeno’s Paradox,
in which the continuum and methods of analysis are used, is known by
philosophers as the Standard Solution.®

Something like the situations for Achilles and the fly is true for the
four bugs. No material bug can fly all the way along the tighter loops
required by the problem, and the four ideal curves defined by the terms
of the problem (supposing the bugs are simply four points traveling
toward one another at a constant speed) never meet, although the
four curves do converge to the origin. So the two requirements that
the four bugs stay on course like mobile points on a curve and meet
at the origin are incompatible. The problem is posed in a way that
misleads the unwary, because a problem expressed in terms of real-
world behavior is confounded with a problem in differential geometry.
The problems faced by Achilles, the fly and the four bugs are examples
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showing the importance of keeping clear the distinction between reality
and the continuum when applying mathematics to “real” problems.

For fun, let’s return to the problem of dynamics. You might differ-
entiate Equation (2) to find the precise acceleration Fiery undergoes
while staying on track toward Moonbeam.? Her pursuit path is a spi-
ral obtained by integrating the Equation (4), yielding the parametric
equations,

(7) r(t) =ro——=t; 0(t)=In(Ly—vt); 0<t<Ly/v

NI

with limiting value,

L
limr(t) =0 as t — —
v

This type of spiral is known as a logarithmic spiral. But, because
Fiery’s spiral flight makes a fixed angle with her radius vector from
the origin, it is also called an equi-angular spiral.’® Facts about this
Interesting class of curves can be found on the Internet.

Here’s another thing you might want to examine for yourself. Logic
has implied that Fiery’s planned flight path is just one mile in length.
.But is that actually the length of the spiral derived above? With the
caveat that the path is missing an endpoint, you can see that this is so
by looking at the first two members of Equation (3). This means that
Fiery’s equi-angular spiral, which spirals around the origin infinitely
often is actually finite in length; more precisely, the distance Fiery
travels approaches one mile as a limit as her time of flight approaches
t= LO/U.

Another good exercise is to check consistency. At the outset, we
assumed that because the four bugs adjust their flight direction to stay
pointed directly at the counter-clockwise bug, that their square forma-
tion would shrink at exactly their speed of flight. Now that we have
derived an equation for Fiery’s flight path we can check the consistency
of our assumption with the result. Prove that bugs traveling on “par-
allel” paths (i.e., paths rotated ninety degrees from the path of the
clockwise bug) like the one for Fiery parametrized in Equation (7) do
actually satisfy the conditions of the problem: the four bugs remain at
the corners of a spiralling shrinking square, and each one’s direction of
travel always points directly at the bug counterclockwise to itself.'!

Since we’ve been discussing applications of mathematics to “real-
world” problems, we should try to find something practical in this.
Some night-flying insects navigate by maintaining afixed angle of flight
with reference to the Moon. This is why they spiral futilely around
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an electric light or crash into a candle flame. Similarly, a plane always
traveling at a fixed bearing (not due North or South) will spiral around
a pole in a three-dimensional curve called a lozodrome.

Zenau’s problem illustrates subtleties lurking in mathematical mod-
eling of physical phenomena, even in simple puzzles.

4. AFTERWORD

After writing the piece above I recalled a book that had been sitting on
my shelf for many years, the fourth edition of Tobias Dantzig’s Num-
bers: The Language of Science.'? 1 had bought a copy after meeting
Dantzig when I was in high school, but layed it aside. The book be-
gins with some history of ancient symbols and methods of numeration,
which at that age didn’t interest me. I wanted to learn more about cal-
culus, not how shepherds counted flocks. So, without delving further,
I let the book sit on my shelf for all these intervening years.

What a pity! Dantzig shows what a stupendous intellectual achieve-
ment it was to go from tabulating sheep to the theory of the number
system required for modern analysis. This is a theme I attempted to
underscore in the article above! Better late than never.

What can be more interesting than origins, the tracing out of pro-
cesses by which humankind has gained knowledge? Dantzig’s Part I
tells the story: “The Evolution of the Number Concept.” In the last
chapter of Part I he presents an outline of “Milestones in the Evolu-
tion in the Number Concept” from antiquity through the Nineteenth
Century.

Some of Dantzig’s offhand comments have been superannuated by
later research; he does not recognize that primates have a number sense.
But this is beside the point. His telling of mathematical developments
is sure footed. Without knowing of Robinson’s later model of the con-
tinuum that includes differentials and infinity among the real numbers,
Dantzig allows that future theories may extend the real numbers. In
explaining how the continuum created a construct for the continuous
flow of time, Dantzig also quotes Hilbert on how the quantum theory
denies continuity in nature. There are deep philosophical issues here
with matching mathematics.

Dantzig’s book remains a thoughtful popular introduction to quan-
dries raised and resolved by the number system. “This is beyond doubt
the most interesting book on the evolution of mathematics which has
ever fallen into my hands.” (Albert Einstein, quoted on the book’s
cover)

Further reading is suggested by Mary Tiles cited in the endnotes.



10 MIKE RAUGH (©)2012

NOTES

I This assertion one can doubt, but it’s plausible because by symmetry you
can be pretty sure the bugs continue flight at the corners of a square, and at the
instant one bug flies directly at the counterclockwise one, that one is instantaneously
heading at a right angle toward the bug counterclockwise to her. Thus there is no
component of velocity other than in the direction of the counterclockwise bug, so
the shrink rate of the square must be the full ¥ mph. You can confirm that the
mathematical model that follows reflects this expectation ex post facto, as suggested
among the problems posed in the Conclusion.

2 About notation. Uppercase boldface letters are used to represent vectors, the
dot notation between two vectors indicates the scalar product of the two vectors,
and ||A]| represents the magnitude (length) of A. Note that our representation
of vectors uses polar coordinates (p,6) and uses them to represent the vector as
a pair of Euclidean coordinates: (pcos@, psinf). For unit vectors A and B, it is
always true that A - B = cos#, where 6 is the angle between the two vectors. For
a particle with position on a curve given parametrically as a function of time, for
example R(t), R is the velocity vector of the particle at time ¢, and the speed of the
particle is given by v = ||R|| = VR - R.; if the curve is smooth, the velocity vector
is always tangent to the curve, and R is the acceleration vector of the particle at
time t.

3 Here’s Wikipedia: “A mathematical model is a description of a system using
mathematical concepts and language.” If the system is something in the real world,
the question one should ask is: How well does the model describe the system? Pretty
good, as it turns out, when NASA uses analytical mechanics to model satellite
trajectories. Maybe not so good when Wall Street uses mathematics to model risk.

4T use the term continuum as a synonym for the real number system to em-
phasize its special character. The continuum is a modern invention, arising from
the work of Cauchy, Weierstrass, Dedekind, Cantor, Whitehead and Russell, inter
alia. The continuum has roots in the theory of sets, and it has many mysteries. For
example, the continuum is uncountable, but there can only be a countable number
of algorithms, so most numbers can never be individually specified. If they can’t
be specified, what good are they? Plenty good, as it turns out, since by allowing
for the existence of limits they make analysis possible.

For a development of the real numbers within the context of set theory, see
Yiannis Moschovakis’ Notes on Set Theory, 2nd ed, Springer 2006.

See also the preface and first five chapters of Analysis I, Vol 1, 2nd edition,
by Terence Tao, Hindustan Book Agency, November 12, 2009. That Tao would
take such care in five chapters of an undergraduate honors course to develop the
real number system is in itself an indication of the importance and subtlety of the
subject. (Having seen the Amazon Reviews, I want to say that I like Tao’s leisurely
explanatory style, which reveals more of the underlying thought than, for example,
the arid brevity of Rudin’s Real Analysis, which obscures motivation although it is
good for reference and review.)

A remarkable “novel in cartoons” tells the story of the founding of modern
mathematical logic and set theory, including as subplot the struggle to understand
the continuum: Logicomizx — An Epic Search for Truth by Apostolos Doxiadis,
Christos H. Papadimitriou, Alecos Papadatos and Annie Di Donna, Bloomsbury
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USA; September 29, 2009. I thank mathematician Roja Bandari for this surprising
reference. Can you believe it that a book with such a recondite topic could become
a NYT bestseller? (See the Amazon Book Description and Reviews.)

® For given parameters (D, v, R) you can certainly derive the turn-around points
in terms of explicit train positions, then sum the resulting geometric series as al-
legedly John Von Neumann did very quickly for some version of the problem, but
that level of detail is unnecessary.

6 Take a moment to consider the difference between how easy it is to imagine a
penciled line, and how hard it is to construct the continuum in a mathematically
rigorous way. The Greeks had enough trouble dealing with “irrational” numbers,
and never got far enough to conceive of a rigorous notion of the real number sys-
tem, and Zeno’s Paradox reveals how much trouble they had thinking about a
denumerable infinity.

71 have expressed this in a strictly abstract way to emphasize the set-theoretic
nature of the functions that define the “motions” of Achilles and the Tortoise, and
their dependency on the continuum (R).

8 See “Zeno’s Paradoxes” by Bradley Dowden in the Internet Encyclopedia of
Philosophy, article last dated Apr 1, 2010. For more philosophical discussion about
the logic and set theory used in developing the theory of the continuum, and about
Zeno’s paradoxes in particular, see The Philosophy of Set Theory: An Historical
Introduction to Cantor’s Paradise, by Mary Tiles, Dover Books on Mathematics,
2004. See especially Chapter 4, “Numbering the Continuum,” for a discussion of
ways Cantor used to come to grips with the strangeness of the continuum.

9Since v? is constant, it follows from Equation (3) by differentiation that R-R =
0. This shows that Fiery’s acceleration R is normal to her flight path. So none of
the force she applies in flight is used to maintain speed. (We're ignoring friction.)
All her strength is applied to staying on course. Assuming Fiery has mass m > 0,
she must resist a force of )

muv
LQ — vt
normal to her direction of flight, which approaches infinity as ¢ approaches Lg/v.

10 Tt was remarked in passing that Fiery must always fly at an angle of forty-
five degrees to her vector from the origin. And a previous endnote mentioned the
fact that the dot product between two unit vectors equals the cosine of the angle
between them. Doesn’t this imply that the following should be true for the path
R(t) that we derived?

m|[R(t)|| =

R-R T 1

8 ——————— =C0S — = —
) RIRI "1 V2
Work it out to see if this is correct. Why isn’t it?

11 Check this for Moonbeam by noting that the vector of length Lo — vt in the
direction of Fiery is (Lo — vt)R(t)/v. Add this to R(t) to see that the resulting
vector terminates where Moonbeam should be — on the same kind of spiral as
Fiery’s, rotated counterclockwise ninety degrees. (Use Equations (2), (3) and (4).)
From this you can also see that at any instant, Fiery’s aim at Moonbeam is directly
perpendicular to the direction of Moonbeam’s flight at that instant.

12 Tobias Dantzig, Numbers: The Language of Science. Fourth Edition, Revised
and Augmented, The Free Press, 1954.



