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ABSTRACT. Assuming Kepler’s law that the planets travel in el-
lipses with the Sun at a focus, Newton answered these question:
What acceleration is experienced by a point-mass moving on an
ellipse subject only to a central force acting from the focus of the
ellipse? How must the force change as a function of position
on the ellipse? These questions lead to the inverse-square law
of gravitation, as I show in this article. By starting with an el-
lipse, Newton avoided the more difficult reverse problem of start-
ing with the inverse-square law and solving the differential equa-
tions of motion to infer an ellipse, a feat performed first by Johann
Bernoulli in Newton’s lifetime. Newton derived his results in the
Principia using innovative geometric arguments suited for his au-
dience, but I use what is more familiar today—vector notation and
differential calculus—to derive Newton’s results and, to demon-
strate the contrast in difficulty, solve the differential equations of
motion in the style of Bernoulli.

1. INTRODUCTION

The background of Newton’s discovery of universal gravitation is
an interesting topic in itself. I touch on just a few facets and provide
references for anyone who would like to go deeper.

Newton was not the first on record to state that elliptic planetary
motion could be the result of the interaction of the inertia of a planet
and a central attractive force inversely proportional to the square of
the distance of the planet from the center. That honor may be due
to Robert Hooke documented in an exchange of letters with New-
ton near the end of 1679 in which Newton expressed the contrasting
idea that if a body could fall unobstructed within the Earth toward
its center it would wind in a spiral (Iliffe [5, Pages 83-86]. It is not
clear what assumptions Newton was making, but if he thought that
the center of the Earth would attract an object with the same force
as it would an object falling from outside the surface, he was clearly
in error in two ways: First, in that case the trajectory would be an
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ellipse as he later proved in the Philosophiae Naturalis Principia Math-
ematica (Principia below). Second, he also proved there that the cen-
tral force within a homogeneous Earth would be proportional to the
distance from the center; had he known this at the time of his letter,
he would have recognized that the curvature of the trajectory in an
inner-Earth regime would decrease as it approached the center—not
increase as in a spiral. It appears that at this time, when Newton
was already 36 years old, he was unaware of or had forgotten the
inverse-square law and its implications.'

However, when Newton had begun preparing work on the Prin-
cipia by April of 1685, he had already established the inverse-square
law as the basis for his theory of universal gravitation.” He began by
assuming Kepler’s law that planets travel in ellipses with the Sun at
a focus.” He generalized Kepler’s area law to show that a point-mass
accelerated by an arbitrary central force would move in a trajectory
such that the radius vector would sweep out area at a constant rate.
From this he deduced the inverse-square law for the central force re-
quired to maintain a planet on an elliptical trajectory. As we shall
see, these results would not have been difficult for Newton to ob-
tain, since he already had his version of fluxional calculus well under
control.*

Newton did not formulate and solve the problem of planetary mo-
tion in terms of differential equations. It would have been feasible

"Newton had already deduced the centripetal force required to keep an object
in a circular orbit in his youthful waste book (lliffe [5, Pages 26-27]. But this is
a relatively simple problem because the radius of the trajectory is constant and
its tangential speed can be specified as a constant. The correspondence implies
that Newton had not yet taken the more difficult steps to determine the central
force required to keep an object traveling in an elliptical orbit at an appropriately
varying speed.

*http:/ /en.wikipedia.org/wiki/Isaac_Newton/Authoring Principia, accessed
March 7, 2007.

3”Despite [Newton's] later dismissal of Hooke’s ablities and his refusal to con-
tinue the [exchange cited above ] any further, Newton later confessed to Edmund
Halley that this exchange incited him to think anew about celestial mechanics. In-
deed, it was probably about this time that Newton momentously used Kepler’s
Second Law to demonstrate that on an elliptical orbit a body is subject to an
inverse-square law of attraction.” (Iliffe [5, Page 86])

*As early as 1665 at age 22 Newton had begun developing his methods of cal-
culus and had discovered the Fundamental Theorem.
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for him to do so using his calculus methods, which he shared pri-
vately among a few close associates.” But he presented his results
to the public in the Principia using an original method of geometric
analysis that he stated would be more easily understood by his con-
temporaries familiar with classical geometry. The more difficult task
of formulating and solving the differential equations of motion as-
suming a central inverse-square-law of attraction was accomplished
first by Johann Bernoulli in Basel, based on the version of differen-
tial and integral calculus advanced by Leibniz. These methods were
eventually crystallized by Euler, and with rigor contributed in later
generations by Cauchy, Weierstrass, Riemann, Dedekind and Can-
tor, they formed the basis for modern calculus. (See Guicciardini [3]
and Dunham [2].)

In the following demonstrations I begin on the same path of rea-
soning taken by Newton: I start by deriving Newton’s area law for
a body accelerating under the influence of a central force. Then, as-
suming motion on an ellipse, I deduce the inverse-square law with-
out solving the differential equations of planetary motion. In the ap-
pendices I provide some alternative derivations for comparison. In
the first appendix, I begin with the differential equations of motion,
and assuming an inverse-square law of force, I solve the equations in
much the same manner as Johann Bernoulli. In the second appendix,
I show two ways that a point-mass accelerating due to a central force
must move in a plane, using a simple geometric argument followed
by a rigorous calculus argument.

I use differential calculus instead of geometry in the style of New-
ton, but, of course, I must also use Newton’s laws of motion:

1) Every object in a state of uniform motion tends to remain in
that state of motion unless an external force is applied to it. (This is
Galileo’s law of inertia.)

2) The change in motion is proportional to the motive force im-
pressed and is made in the direction of the straight line in which that
force is impressed (F = ma).

3) To every action there is always an opposed and equal reaction.

Newton’s laws are so familiar now that we take them for granted
and often apply them implicitly. Even the notion of the mass of an ob-
ject, and the parallelogram law for adding vectors, are due to New-
ton. But these were revolutionary when Newton put them forward,

Newton was able to formulate and solve dynamical problems using fluxional
calculus [3].
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and they stand with his calculus at the cornerstone of his theory of
mechanics. Although Hooke may have been first to conceive of the
inverse-square law, he could not have demonstrated its consistency
with elliptical orbits without calculus-like methods and the laws of
motion, and these he did not have.

2. NEWTON’S AREA LAW

We imagine the motion of an object of point-mass m expressed as a
vector in polar coordinates,

R=rr

where r = (cos #, sin 0) is a unit radius vector, with § measured coun-
terclockwise in radians.

Differentiating twice with respect to time, we obtain acceleration
R.° First, the velocity vector,

R =7t +7rfry

where ry = (—sin#, cos §) is a unit vector orthogonal to r and points
counterclockwise. And, then, the acceleration vector,

R=(F—rf*)r+ (270 +r6)ry
Assuming central attraction, it must be that the component of force
in the direction of ry vanishes:

270 + rf = % <r29') —0

The latter equation may be written A = 0, so
(1) At) = 0 = «

with « constant, is (twice) the rate at which area is swept out by the
radius vector. This is Newton’s area law.’

Incidentally, assuming the central force is of the form F = — fr, the
expression above for R allows us to write the equations of motion as

®The convention of using dots over a variable to indicate differentiation with
respect to time is due to Newton.

’Newton proved more, namely that the trajectory of an object accelerated by a
central force lies within a plane. I prove this in an appendix, using it as an instance
for which a convincing geometric argument is much simpler than a rigorous cal-
culus argument.
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follows:
i —r? = —i
(2) . m
2710 +r0 =0

Assuming f = Gm/ r?, these are in essence the equations Johann
Bernoulli solved. And to exhibit the comparative difficulty, I solve
them in an appendix.®

3. THE INVERSE-SQUARE LAW

We derive the central force required to hold planets in elliptical or-
bits with the Sun positioned at a focus. We assume the fact that an
object accelerated by a central force travels in a planar trajectory, a
fact proved in an appendix. But here it is good enough to assume
with Kepler that planetary motion is planar and elliptic. The equa-
tion of an ellipse with focus at the origin and major axis lying on the
X-axis is given by’
L

3) RO = T ocosd”

Since acceleration of an object is related to the applied force, we must
deal with R and R.

0), 0<e<l

esinf o 9

4) R = Lmr(e) + Lm ro(0)

And

R_1 262 sin® § 62 n e cos b 62 n esinf b B 62 ] .
(1+ecosf)?  (14+ecosf)?  (1+ecosh)®> 1+ecosh

+L

(1 + ecosh)? * 1+ ecosf

2¢ sin 0 62 0 ]
Iy

We apply Newton’s second law stating that force is equal to mass
times acceleration. Since we assume that the force F(6) on the par-
ticle is directed toward the origin, the fact that r is perpendicular to
rp implies that the ry-component of the force must vanish. Noting

81 use G to represent the strength of the central force per unit of mass of the
object being accelerated.

9This is a typical parameterization of a conic section: L is the semi-latus rectum,
and e characterizes the type of conic. If 0 < e < 1, then the conic is an ellipse (and
e is its astronomical eccentricity); if e = 1 the conic is a parabola, and if e > 1 then
the conic is a hyperbola.
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that a similar quantity appears in the r-component, we can remove
it, too, and wind up with

- e cos 6 62 02 mL6?

F(0) = mR =mL — _
(6) =m " (1+ecosf)?> 1+ ecosb ' (1+ecos€)2r
mr26?
=— r
L

But we saw in Equation (1) of the preceding section that, for a
central force, 26 = «, which substituted in the preceding expression
yields the inverse-square law:

77’lOé2

Lr?

So here we have the inverse-square law. Supposing the orbit is a
circle of radius L and the particle of mass m is moving at a constant
tangential speed v, then by Equation (1) a®> = L**> = L*»®. Sub-
stitution in Equation (5) yields the result recorded in Newton’s waste
book mentioned in a footnote above, obtained there by Newton using
simpler reasoning:

) F() = -

r

2
F(0) = —%r

4. CONCLUSION

We have not yet solved the differential equations of planetary mo-
tion, nor did we show that elliptical motion is even possible when
driven by a central force.'” We did something simpler: assuming the
truth of Kepler’s assertion that planets in fact do move in elliptical
orbits, we inferred that the central attraction accelerating the planets
must be an inverse square.

The combination of practical knowledge about the actual working
of a physical system, combined with a method of geometric analysis
that allowed Newton to demonstrate his results with convincing di-
agrams,'' was typical of Newton’s way of working. His criticism of
Leibniz’s approach was that it relied too much on purely symbolic
manipulation of differentials and abstract reasoning, leaving it open
to unchecked errors. Newton’s criticism was well founded in the
sense that later generations of mathematicians did find a need for

19This is done in the first appendix.
U give an example of this in the second appendix where I show that a central-
force trajectory is planar.
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greater rigor in the methods of analysis,'? nevertheless the Leibniz
school prevailed in the end. And, indeed, the mathematical tech-
niques we used above are rooted as much in the school of Leibniz as
in the school of Newton.

But Newton did more than simply derive the inverse-square law
from the assumption of an elliptical orbit; he also showed that a
point-mass with initial given velocity moving under the influence
of a central inverse-square law would travel in a unique conic. This,
however, is not the same as formulating the problem of planetary
motion as differential equations and solving them systematically,
deducing an ellipse from the assumption of the inverse-square law.
That was accomplished by a later generation of mathematicians.

Much of Newton’s thought seems foreign to us today. The great
English economist John Meynard Keynes was an avid student of
Newton'’s writings in science and theology as well as a collector of
Newton’s writings in alchemy. Here is what he had to say at the
home of Newton on Christmas Day, 1942, on the three-hundredth
anniversary of Newton’s birth:

“[Newton] came to be thought of as the first and greatest of the
modern age of scientist, a rationalist, one who taught us to think on
the lines of cold and untinctured reason.... Newton was not the first
of the age of reason. He was the last of the magicians, the last of the
Babylonians and Sumerians, the last great mind which looked out on
the visible and intellectual world with the same eyes as those who
began to build our intellectual inheritance rather less than 10,000
years ago.” [7, Newton The Man, Pp 277-285].

I have drawn on several sources. Additional resources can be
found in the following. Westfall [8] has written a critically acclaimed
nine-hundred-plus-page biography that sets Newton in the social
and scientific context of his time. In fewer pages Oxford University
Press, in its Very Short Introduction series, shows something of the
variety and remoteness of Newton’s ideas in alchemy and theology
as well as in science [5]. Guicciardini [3] reviews early criticism of
Newton’s work by Continental mathematicians. Classic examples of
Newton’s and Leibniz” use of their distinctive methods of calculus
are in Dunham [2]. The textbook by Hahn [4] discusses Newton's

12NJewton’s methods, too, came under criticism, as in the famous challenge of
George Berkeley, in his essay The Analyst: “ And what are these fluxions? The veol-
cities of evanescent increments? And what are these same evanescent increments?
They are neither finite quantities nor quantities infinitely small, nor yet nothing.
May we not call them the ghosts of departed quantities?” Quoted by Dunham [2,

p71].
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planetary theory and compares the calculus of Newton and Leibniz.
A derivation of Kepler’s laws using potential theory can be found in
the classic text of Courant and John [1].

5. APPENDIX: DERIVATION OF ELLIPSES FROM DIFFERENTIAL
EQUATIONS OF MOTION

To demonstrate the technical challenge faced by Johann Bernoulli,
we solve the equations of motion for a particle accelerating due to
a central force inversely proportional to the square of the distance
from the source. The techniques are similar to those used by Bernoulli
in his original solution [3, Pp 223-225]. Bernoulli formulated the
problem explicitly in terms of differential equations, just as we do.
And his criteria for a satisfactory solution are very much like our
own:

1) apply a general analytical procedure without assuming the re-
sult sought;

2) find a general integral that reveals that all the possible solutions
have been found.

Bernoulli, as a follower of Leibniz, utilized the symbolic manipula-
tion of differentials (a questionable business in the eyes of Newton).
It was not until the time of mathematicians like Cauchy, Riemann
and Weirstrass—and later Dedekind and Cantor—that the funda-
mental operations of calculus were fully justified by rigorous ana-
lytical methods [2]. In the following derivation note especially how
we exploit relationships among the differentials.

We begin with the equations of motion for an object accelerating
under a central inverse-square law of force (See Equations (2)):

i—rf? = —g
6) o,
2r0 +10 =0

A constant o appeared in the derivation of the area law derived
above from the second equation: A(t) = r?0 = «. Using § = «/r?
in the first equation yields,
e
TR T
We will solve the system on the assumption that at a given point

(1o, 6p) the tangential speed is given as vy. Letting v = % and noting



KEPLER’S ELLIPSES AND NEWTON’S INVERSE-SQUARE LAW 9

that 7 = v2, the latter equation becomes

o> G
vdv = (F — ﬁ) dr

which integrates to

2 2 2rz2 r 2r2 1o
Or ,
2G
v? = _oz_z —+C
r r
where
ot 2G
(7) C=v+———

where vy is the initial rate of change of length of the radius vector—
not vy the tangential speed of the point-mass.
Now we can use the fact that
_dr _drdd  dr  Gdr
T @ T dedt  Tde - r2dp
in the preceding equation to obtain
(0%

df = dr
rvCr? + 2Gr — o2
Consulting a table of integrals,'® we find the latter integral to be of
the type,

/ de -1 cos-] ( br + 2a )
WX  V—a v/ b? — 4ac
X =+Va+ br + cx?

where

And in our case,
a=—-a? b=2G, c=C
Therefore,

2 2
0 — 6y = —cos ! (GT—O‘) + cos~! (GTU—O‘)
rvG2 + o2C roVG? + o2C
BThe integral can be routinely computed beginning with the substitution z =
1/u. Jeffrey [6] gives the integral in terms of the arc sine, but the use of the negative
arc cosine is equivalent. Newton as well as Leibniz and his followers knew the
fundamental theorem of calculus, so by differentiation and assorted integration

techniques including substitution of variables they built up catalogs of integrals,
just as our present-day table-builders do.
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And,
a_2 =G+ (\/m) oS {6 — 0y — cos™? (GTO—_OP”
Letting ¢, be the arc cosine expression in the brackets, we may write,

B a?/G
"~ 1+ecos (0 —0y— )

with e = /1 + a2C/G?. Thus the solution is a conic, as anticipated.
But there is some additional information here.

Notice that any initial values for r, 6y, vy that preserve e and 6+ ¢y
will result in the same solution curve. The fixed value of 6y + ¢y can
be an arbitrary constant, but in order for the resulting conic to be
of the standard form of Equation (3) in the section on the Inverse-
Square Law we must have that 6y + ¢o = 0 mod 2. In this case the
solution of the equations of motion is

a?/G
r = —
1+ecosf

r

(8)

Going back to the definition of ¢, we infer that the constraint 6, +
¢o = 0 mod 27 requires that

a?/G

rg= ————
0 1+ ecosby

which says nothing more than that the initial point ry, 6, lies on the
specified conic. However, as we shall see, the fact that the value of
e is preserved says something more useful. Using Equation (4) for
R in the section on the Inverse-Square Law we obtain an expression
for C' in terms of tangential speed v:

L*a?
2 2
Vg = Vg + —5—
0= %" 72
In the present section L = o?/G. Also, from the section on the

Inverse-Square Law, we can revisit Equation (5) for F to find that
the constant of force there, namely, La?, must be the same as the
constant G used in this section’s formulation of the equations of mo-
tion. Combining the fact that L = o?/G and Lo® = G, we find that
a* = G?, and therefore,

L*a®  (2'/G?)a?  o?
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This allows us to write

2
«
2 _ .2
o
and to rewrite C as,
2G
=y~ 2
To

So, finally,

L+ 202 (movg  mG
e= —
mG? 2 To

Since the value of e is preserved at all points on the curve, the value
of the last parenthesis must also be constant, expressing conserva-
tion of energy on the curve. This is the more useful result referred to
above.

That all solutions of the equations of motion for an inverse-square
law are conic sections was first claimed (and proved) by Newton. We
have found by integration all the trajectories satisfied by the equa-
tions of motion, thus meeting Bernoulli’s criteria.

Derivations similar to above can be found in many text books. For
a development in terms of gravitational potential and a general law
of energy conservation see Chapter 6 of the text by Courant and John

[1].
6. APPENDIX: CENTRAL-FORCE MOTION IS PLANAR

We prove that central-force motion is planar in two ways: the first is
an instance in which a geometric argument makes the result seem
obvious, and the second gives a proof using differential calculus.
The latter is perhaps more satisfying to the modern mind, but the
force of an argument in the style of the former was generally satis-
factory for Newton.

First, consider the plane determined by the radius vector and the
velocity vector at any given instant; there is no component of force
acting orthogonal to the plane—hence no force to deflect the object
(and its velocity vector) off the plane. The competing forces of “iner-
tia” (Newton’s first law), which continues in the plane, and the cen-
tral force, which acts on the object along the radius from the center
lying in the plane (Newton’s second law), have their resultant within
the plane (Newton’s parallelogram law). So the object must continue
its motion in the plane. This is the crux of Newton’s argument in
the Principia, in which he used infinitesimally refined polygonal ap-
proximations to obtain properties of motion of an object reacting to
a central force.
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In our second line of reasoning we use differential calculus to ob-
tain a proof that is more rigorous by today’s standard but is no more
convincing. We begin by representing an object’s radial position
from the center of force as a function of time R(¢), then derive the
velocity vector R(t) and the acceleration vector R(t). From the lat-
ter we determine the constraints on the coordinates imposed by the
central force, then use them to show that the velocity vector must lie
in a fixed plane.

9) R = r (cos @ sin ¢, sin 0 sin ¢, cos ¢)

Using the subscript as an index, obtain an orthonormal basis by
the differentiation suggested in the subscript,

(10) r = (cos #sin ¢, sin 6 sin ¢, cos @)
rp = (—sinf,cosd,0) normalized

rys = (cos B cos ¢, sin b cos ¢, — sin @)

And

(11) I =singfry+ or,
rg = —sin¢9r—cos¢6’r¢
Iy :cosqzbérg —(br

So
(12) R:¢r+rf:fr+rsin¢9rg+rgz3r¢
And

R=ir+7t

(13) —|—(fsin¢9+rcos¢9q§—|—rsin¢é>rg—i—rsin(béi'g

+ (Tqb + Tg'zﬁ r(b) + rgz.ﬁ Iy

So, after expanding 1, ry and ry4 in terms of r, ry and ry and consoli-
dating,

(14) R:(f—rsin2¢92—rgz§2) r
+ (27*singb9+2rcos¢9¢3+rsin¢é> )

+ (2r<;5 — rsin¢cos ¢ 6% + rgb) ry
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The assumption of central force requires that the components of ry
and r, vanish. Therefore,

(15) 27 sin ¢ 0 + 2r cos ¢ 4+ rsin ¢ = 0
2p — rsingcos d 0 + ré =0

Now we are ready to prove that central-attraction motion is planar.
It is sufficient to show that the velocity vector from Equation (12),'*

R = (7", rsing6, rgb)
must at any given time lie in a fixed plane. The plane is determined

as the one orthogonal to both the radius vector from Equation (9),
R = rr,and R. So, define a normal vector

(16) N=(rr)xR=(0,—1%¢,r*sin¢0) = —r?dry+ r’singlr
¢

We want to show that N(¢) points in a constant direction. It is
allowable for the magnitude of IN(¢) to change with time as long as
the direction remains constant. But, in fact, we will show that NN
remains constant as a function of time by proving that N = 0.

o d : o
(17) N = 7 (—r2¢ rg + 1’ sm¢9r¢>
= — (27”7*(& + 7’2<}5> ro — 2P Ty
+ (2r7"sin¢6’—|—r2008¢9(/5+7“281n¢65> ry -+ r281n¢9r'¢
Incorporating the basis derivatives from Equations (11) and consoli-
dating yields,

N=r (—2%$—r¢§+rsin¢cos¢92> Ty
+r <2fsin¢9+2rcos¢9<ﬁ+rsin¢é) ry

From Equations (15), we obtain N = 0, as asserted.

We have just shown that the motion is planar, but our analysis
reveals more. Knowing now that N, defined by Equation (16), is
constant allows us to write,

(18) o =a
r?singd = 3

14Using as coordinates the projections of a vector on the orthonormal basis r,
ry, and ry from Equations (10).



14 MICHAEL RAUGH

where o and § are constants. This proves that the expressions r%¢

and r?sin¢f have constant values on any solution curve for the
equations of central-force motion. Such expressions are called “in-
tegrals” of the system. Another discovery is the reversed symmetry
in the coefficients of Ry and R, evident in Equations (14) and (18).
In this reversal we can infer the orthogonal reaction of a gyroscope
to twists of the axis of rotation.

Finally observe that, since the motion is planar, we can without
loss of generality assume the solution curve lies either on a polar
great circle by fixing ¢ at a constant value or on the equator by fixing
¢ = m/2. You can check Equation (14) to see that in either case the
system reduces to a system equivalent to Equations (2), and the re-
spective Equation (18) yields Newton’s area law. Newton’s area law
can also be derived directly from the fact that N is constant; as the
cross product of the radius vector and the velocity vector, the mag-
nitude of N gives the area of the parallelogram subtended by the
radius vector and the velocity vector. I leave the latter inference as
“an exercise for the reader.”
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